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1 Partitions

Definition 1. A partition of n is λ = (λ1 ≥ . . . ≥ λk) such that λ1 + . . .+
λk = n, where

• n is the size of λ

• k is the number of parts

Write k(λ) for the number of parts of λ.

We’ve already discussed Ferrers diagrams, as well as Durfee squares and the
conjugate position where λ̃ is the conjugate of λ:

Example 1. λ = (6, 5, 5, 3, 2, 2, 1)

fig. 1

Durfee Square

Definition 2. Let λ = (λ1 ≥ . . . ≥ λk) be a partition. Let F be its Ferrers
diagram viewed with the top left corner’s coordinates at (0, 0). Let F̃ be F
after reflecting in y = −x. Then the partition λ̃ corresponding to P̃ is the
conjugate of λ

Example 2. With the previous example for λ, λ̃ = (7, 6, 4, 3, 3, 1).

Some specifications for partitions:

P =

∞∏
j=1

Seq(Zj)
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P = MSet(I) I = Seq≥1(Z)

P =
∞∑
k=1

(
Zk2

)
×

 ∞∏
j=1

Seq(Zj)

2

2 Identities and Bijections

A classic problem you may have seen before:

Proposition 1. The number of partitions of size n with distinct parts equals
the number of partitions of size n with odd parts.

Proof. Let D be the combinatorial class of partitions with distinct parts.
Let Po be the combinatorial class of partitions with odd parts.

D =

∞∏
j=1

(E + Zj) D(x) =

∞∏
j=1

(1 + xj)

Po =

∞∏
j=1

Seq(Z2j−1) Po(x) =

∞∏
j=1

1

1− x2j−1

D(x) =
∞∏
j=1

(1 + xj)
∞∏
j=1

1− xj

1− xj
=
∞∏
j=1

1− x2j

1− xj
=
∞∏
j=1

1

1− x2j−1
= Po(x)

Proposition 2 (Euler’s pentagonal number theorem).

∞∏
j=1

(1− xj) =
∞∑

h=−∞
(−1)hx

h(3h−1)
2

Before we prove this, what does it have to do with pentagonal numbers?
Pentagonal numbers summarize the ”size” of pentagons:

1 2 3

fig. 2
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To simplify summing, here’s a trick:

fig. 3

We want a formula for these numbers. Pentagonal numbers are given by the
formula

h2 +
h(h− 1)

2
=

3h2 − h
2

which appears as the power of x.

Proof. First rewrite the result:

∞∏
j=1

(1− xj) = 1 +
∞∑
h=1

(−1)h
(
x

h(3h−1)
2 + x

h(3h+1)
2

)
Now let’s interpret these combinatorially. We’ll use D again. Let D(x, y)
be the bivariate generating function for D.

D(x, y) =
∑
λ∈D

x|λ|yk(λ)

Then

D(x, y) =
∞∏
j=1

(1 + xjy)

So D(x,−1) is the left hand side of the proposition.

Furthermore,

D(x,−1) =
∞∑
n=1

(de,n − do,n)xn

where

• de,n is the number of elements of Dn with an even number of parts

• do,n is the number of elements of Dn with an odd number of parts

Now let’s define some more parameters for partitions. x(λ) = λk(λ) = the
smallest part corresponds to the boxes in the last row of the Ferrers diagram.

Mark them on the Ferrers diagram with an x.
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fig. 4

O(λ) = max{c : λ1 + 1 − c = λc}, which is the number of boxes in the
rightmost reverse diagonal of the Ferrers diagram.

Now we want to build an involution ψ : D → D with the following properties:

• |ψ(λ)| = |λ| ∀λ ∈ D

• either ψ(λ) = λ or |k(λ)− k(ψ(λ))| = 1 ∀λ ∈ D

• ψ(ψ(λ)) = λ ∀λ ∈ D

Assuming we have such a ψ, let

fe,n = |{λ ∈ Dn : k(λ) even, ψ(λ) = λ}|

fo,n = |{λ ∈ Dn : k(λ) odd, ψ(λ) = λ}|

Then

D(x,−1) =
∞∑
n=1

(de,n − do,n)xn

=

∞∑
n=1

(fe,n − fo,n)xn +
∑

λ∈D, |k(λ)−k(ψ(λ))|=1

xλ(−1)k(λ)

but applying ψ to that equation we get

D(x,−1) =

∞∑
n=1

(fe,n − fo,n)xn +
∑

λ∈D, |k(λ)−k(ψ(λ))|=1

xψ(λ)(−1)k(ψ(λ))

Then by ψ, the last term of the second equation is the negative of the last
term of the first equation. Thus, they are each zero.

Next, build ψ: take λ ∈ D

• (a) If x(λ) ≥ o(λ)+2, then remove the o boxes, including any box with
both x and o. Append them as a new row. The result is the Ferrers
diagram of a partition with distinct parts, since after removing the o
boxes, we still have at least o(λ) + 1 boxes in the last row, so we can
add the o’s as a new row remaining distinct.

• (b) If x(λ) = o(λ) + 1 and there is no box with both x and o, then do
as in part (a) and we still get a partition with distinct parts.
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• (c) If x(λ) = o(λ) + 1 and there is a box with both x and o, then
ψ(λ) = λ.

• (d) If o(λ) > x(λ), remove the x boxes including any x,o box and
append one to the end of the first x(λ) rows. This gives a partition
with distinct parts and furthermore each x is appended immediately
following an o.

• (e) If o(λ) = x(λ) and there’s no box with both x and o, then do as
in (d) and get the same result.

• (f) If o(λ) = x(λ) and there is an x,o box, then ψ(λ) = λ.

Now we need to check ψ has the properties it’s supposed to have. As we
constructed it, we checked ψ : D → D. Also, |ψ(λ)| = |λ| because we only
move boxes, never add or remove them.

• In (c) and (f), ψ(λ) = λ.

• In (a) and (b), k(λ) = k(ψ(λ))− 1

• In (d) and (e), k(λ) = k(ψ(λ)) + 1

giving the second property of ψ.

If ψ is in (c) or (f), then so is ψ, so ψ(ψ(λ)) = λ.

If λ is in (a) or (b),
x(ψ(λ)) = o(λ)

o(ψ(λ)) ≥ o(λ)

if equal, there’s no x,o box so we’re in the case (d) or (e) for ψ(λ). So
ψ(ψ(λ)) just places the boxes back.

Similarly, if λ is in (d) or (e),

x(ψ(λ)) > x(λ)

(strictly greater due to distinct parts.)

o(ψ(λ)) = x(λ)

if x(ψ(λ)) = x(λ) + 1, then we didn’t add an extra box to this row, so no
x,o box in ψ(λ). Thus we’re in (a) or (b), and so ψ(ψ(λ)) places the boxes
back in their original places.
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So

D(x,−1) =
∑

λ∈D,ψ(λ)=λ

x|λ|(−1)k(λ) =

∞∏
j=1

(1− xj)

So what are the fixed points of ψ? They must have an x,o box and either
o(λ) = x(λ) or x(λ) = o(λ) + 1.

OR

fig. 5

So the size must be k2 + k(k−1)
2 = k(3k−1)

2 or k2 + k(k−1)
2 = k(3k+1)

2

except if k = 0, then there is just E contributing a 1. So we get the desired
formula.

3 References

Yeats’ personal notes.
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