Math 821, Spring 2013, Lecture 15

Karen Yeats
(Scribe: Avery Beardmore)

March 12, 2013

1 Partitions

Definition 1. A partition of n is $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{k}\right)$ such that $\lambda_{1}+\ldots+$ $\lambda_{k}=n$, where

- n is the size of λ
- k is the number of parts

Write $k(\lambda)$ for the number of parts of λ.
We've already discussed Ferrers diagrams, as well as Durfee squares and the conjugate position where $\widetilde{\lambda}$ is the conjugate of λ :

Example 1. $\lambda=(6,5,5,3,2,2,1)$

Definition 2. Let $\lambda=\left(\lambda_{1} \geq \ldots \geq \lambda_{k}\right)$ be a partition. Let F be its Ferrers diagram viewed with the top left corner's coordinates at $(0,0)$. Let \widetilde{F} be F after reflecting in $y=-x$. Then the partition $\widetilde{\lambda}$ corresponding to \widetilde{P} is the conjugate of λ

Example 2. With the previous example for $\lambda, \widetilde{\lambda}=(7,6,4,3,3,1)$.
Some specifications for partitions:

$$
\mathcal{P}=\prod_{j=1}^{\infty} \operatorname{Seq}\left(\mathcal{Z}^{j}\right)
$$

$$
\begin{gathered}
\mathcal{P}=\operatorname{MSet}(\mathcal{I}) \quad \mathcal{I}=\operatorname{Seq} q_{\geq 1}(\mathcal{Z}) \\
\mathcal{P}=\sum_{k=1}^{\infty}\left(\mathcal{Z}^{k^{2}}\right) \times\left(\prod_{j=1}^{\infty} \operatorname{Seq}\left(\mathcal{Z}^{j}\right)\right)^{2}
\end{gathered}
$$

2 Identities and Bijections

A classic problem you may have seen before:
Proposition 1. The number of partitions of size n with distinct parts equals the number of partitions of size n with odd parts.
Proof. Let \mathcal{D} be the combinatorial class of partitions with distinct parts. Let \mathcal{P}_{o} be the combinatorial class of partitions with odd parts.

$$
\begin{gathered}
\mathcal{D}=\prod_{j=1}^{\infty}\left(\mathcal{E}+\mathcal{Z}^{j}\right) \quad D(x)=\prod_{j=1}^{\infty}\left(1+x^{j}\right) \\
\mathcal{P}_{o}=\prod_{j=1}^{\infty} \operatorname{Seq}\left(\mathcal{Z}^{2 j-1}\right) \quad P_{o}(x)=\prod_{j=1}^{\infty} \frac{1}{1-x^{2 j-1}} \\
D(x)=\prod_{j=1}^{\infty}\left(1+x^{j}\right) \prod_{j=1}^{\infty} \frac{1-x^{j}}{1-x^{j}}=\prod_{j=1}^{\infty} \frac{1-x^{2 j}}{1-x^{j}}=\prod_{j=1}^{\infty} \frac{1}{1-x^{2 j-1}}=P_{o}(x)
\end{gathered}
$$

Proposition 2 (Euler's pentagonal number theorem).

$$
\prod_{j=1}^{\infty}\left(1-x^{j}\right)=\sum_{h=-\infty}^{\infty}(-1)^{h} x^{\frac{h(3 h-1)}{2}}
$$

Before we prove this, what does it have to do with pentagonal numbers? Pentagonal numbers summarize the "size" of pentagons:

fig. 2

To simplify summing, here's a trick:

We want a formula for these numbers. Pentagonal numbers are given by the formula

$$
h^{2}+\frac{h(h-1)}{2}=\frac{3 h^{2}-h}{2}
$$

which appears as the power of x .
Proof. First rewrite the result:

$$
\prod_{j=1}^{\infty}\left(1-x^{j}\right)=1+\sum_{h=1}^{\infty}(-1)^{h}\left(x^{\frac{h(3 h-1)}{2}}+x^{\frac{h(3 h+1)}{2}}\right)
$$

Now let's interpret these combinatorially. We'll use \mathcal{D} again. Let $D(x, y)$ be the bivariate generating function for \mathcal{D}.

$$
D(x, y)=\sum_{\lambda \in \mathcal{D}} x^{|\lambda|} y^{k(\lambda)}
$$

Then

$$
D(x, y)=\prod_{j=1}^{\infty}\left(1+x^{j} y\right)
$$

So $D(x,-1)$ is the left hand side of the proposition.
Furthermore,

$$
D(x,-1)=\sum_{n=1}^{\infty}\left(d_{e, n}-d_{o, n}\right) x^{n}
$$

where

- $d_{e, n}$ is the number of elements of \mathcal{D}_{n} with an even number of parts
- $d_{o, n}$ is the number of elements of \mathcal{D}_{n} with an odd number of parts

Now let's define some more parameters for partitions. $x(\lambda)=\lambda_{k(\lambda)}=$ the smallest part corresponds to the boxes in the last row of the Ferrers diagram.

Mark them on the Ferrers diagram with an x.

$O(\lambda)=\max \left\{c: \lambda_{1}+1-c=\lambda_{c}\right\}$, which is the number of boxes in the rightmost reverse diagonal of the Ferrers diagram.

Now we want to build an involution $\psi: \mathcal{D} \rightarrow \mathcal{D}$ with the following properties:

- $|\psi(\lambda)|=|\lambda| \quad \forall \lambda \in \mathcal{D}$
- either $\psi(\lambda)=\lambda$ or $|k(\lambda)-k(\psi(\lambda))|=1 \quad \forall \lambda \in \mathcal{D}$
- $\psi(\psi(\lambda))=\lambda \quad \forall \lambda \in \mathcal{D}$

Assuming we have such a ψ, let

$$
\begin{gathered}
f_{e, n}=\mid\left\{\lambda \in \mathcal{D}_{n}: k(\lambda) \text { even, } \psi(\lambda)=\lambda\right\} \mid \\
f_{o, n}=\mid\left\{\lambda \in \mathcal{D}_{n}: k(\lambda) \text { odd, } \psi(\lambda)=\lambda\right\} \mid
\end{gathered}
$$

Then

$$
\begin{gathered}
D(x,-1)=\sum_{n=1}^{\infty}\left(d_{e, n}-d_{o, n}\right) x^{n} \\
=\sum_{n=1}^{\infty}\left(f_{e, n}-f_{o, n}\right) x^{n}+\sum_{\lambda \in \mathcal{D},|k(\lambda)-k(\psi(\lambda))|=1} x^{\lambda}(-1)^{k(\lambda)}
\end{gathered}
$$

but applying ψ to that equation we get

$$
D(x,-1)=\sum_{n=1}^{\infty}\left(f_{e, n}-f_{o, n}\right) x^{n}+\sum_{\lambda \in \mathcal{D},|k(\lambda)-k(\psi(\lambda))|=1} x^{\psi(\lambda)}(-1)^{k(\psi(\lambda))}
$$

Then by ψ, the last term of the second equation is the negative of the last term of the first equation. Thus, they are each zero.

Next, build ψ : take $\lambda \in \mathcal{D}$

- (a) If $x(\lambda) \geq o(\lambda)+2$, then remove the o boxes, including any box with both x and o. Append them as a new row. The result is the Ferrers diagram of a partition with distinct parts, since after removing the o boxes, we still have at least $o(\lambda)+1$ boxes in the last row, so we can add the o's as a new row remaining distinct.
- (b) If $x(\lambda)=o(\lambda)+1$ and there is no box with both x and o , then do as in part (a) and we still get a partition with distinct parts.
- (c) If $x(\lambda)=o(\lambda)+1$ and there is a box with both x and o , then $\psi(\lambda)=\lambda$.
- (d) If $o(\lambda)>x(\lambda)$, remove the x boxes including any x, o box and append one to the end of the first $x(\lambda)$ rows. This gives a partition with distinct parts and furthermore each x is appended immediately following an o.
- (e) If $o(\lambda)=x(\lambda)$ and there's no box with both x and o , then do as in (d) and get the same result.
- (f) If $o(\lambda)=x(\lambda)$ and there is an x, o box, then $\psi(\lambda)=\lambda$.

Now we need to check ψ has the properties it's supposed to have. As we constructed it, we checked $\psi: \mathcal{D} \rightarrow \mathcal{D}$. Also, $|\psi(\lambda)|=|\lambda|$ because we only move boxes, never add or remove them.

- $\operatorname{In}(\mathbf{c})$ and $(\mathbf{f}), \psi(\lambda)=\lambda$.
- In (a) and (b), $k(\lambda)=k(\psi(\lambda))-1$
- In (d) and (e), $k(\lambda)=k(\psi(\lambda))+1$
giving the second property of ψ.
If ψ is in (c) or (f), then so is ψ, so $\psi(\psi(\lambda))=\lambda$.
If λ is in (a) or (b),

$$
\begin{aligned}
& x(\psi(\lambda))=o(\lambda) \\
& o(\psi(\lambda)) \geq o(\lambda)
\end{aligned}
$$

if equal, there's no x, o box so we're in the case (d) or (e) for $\psi(\lambda)$. So $\psi(\psi(\lambda))$ just places the boxes back.
Similarly, if λ is in (d) or (e),

$$
x(\psi(\lambda))>x(\lambda)
$$

(strictly greater due to distinct parts.)

$$
o(\psi(\lambda))=x(\lambda)
$$

if $x(\psi(\lambda))=x(\lambda)+1$, then we didn't add an extra box to this row, so no x, o box in $\psi(\lambda)$. Thus we're in (a) or (b), and so $\psi(\psi(\lambda))$ places the boxes back in their original places.

So

$$
D(x,-1)=\sum_{\lambda \in \mathcal{D}, \psi(\lambda)=\lambda} x^{|\lambda|}(-1)^{k(\lambda)}=\prod_{j=1}^{\infty}\left(1-x^{j}\right)
$$

So what are the fixed points of ψ ? They must have an x, o box and either $o(\lambda)=x(\lambda)$ or $x(\lambda)=o(\lambda)+1$.

OR

fig. 5
So the size must be $k^{2}+\frac{k(k-1)}{2}=\frac{k(3 k-1)}{2}$ or $k^{2}+\frac{k(k-1)}{2}=\frac{k(3 k+1)}{2}$ except if $k=0$, then there is just \mathcal{E} contributing a 1 . So we get the desired formula.

3 References

Yeats' personal notes.

