Math 821, Spring 2013, Lecture 15

Karen Yeats
(Scribe: Avery Beardmore)

March 12, 2013

1 Partitions

Definition 1. A partition of n is A = (A1 > ... > A\g) such that A\ + ... +
A, = n, where

e n is the size of A
e k is the number of parts

Write k(A) for the number of parts of .

We’ve already discussed Ferrers diagrams, as well as Durfee squares and the
conjugate position where A is the conjugate of A:

Example 1. A\ = (6,5,5,3,2,2,1)

-
-

Durfee Square
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Definition 2. Let A = (A > ... > \g) be a partition. Let F' be its Ferrers
diagram viewed with the top left corner’s coordinates at (0,0). Let F be F
after reflecting in y = —x. Then the partition A corresponding to P is the
conjugate of A

Example 2. With the previous example for A, A= (7,6,4,3,3,1).
Some specifications for partitions:

P = H Seq(279)

J=1



P =MSet(I) I=Seq>1(2)

2
P = Z (ZkZ) X H Seq(27)

k=1 j=1

2 Identities and Bijections

A classic problem you may have seen before:

Proposition 1. The number of partitions of size n with distinct parts equals
the number of partitions of size n with odd parts.

Proof. Let D be the combinatorial class of partitions with distinct parts.
Let P, be the combinatorial class of partitions with odd parts.

ﬁ5+33 ﬁ 1+a7)

Po = H Seq(2971)  Py(x) = H 1— 251
j=1

j=1

D(z) = [J(1+47) Hl_ﬂ —H — —Hil_xzj 7 = Po(x)
Jj=1 Jj=1 =1

Proposition 2 (Euler’s pentagonal number theorem).
o . R(3h—1)
[T0-a)= 3 (s

Before we prove this, what does it have to do with pentagonal numbers?
Pentagonal numbers summarize the ”size” of pentagons:



To simplify summing, here’s a trick:

We want a formula for these numbers. Pentagonal numbers are given by the
formula

h(h—1) 3h%—h
2 _
Wt ==

which appears as the power of x.

Proof. First rewrite the result:

e e h(3h—1) h(3h+1)
H(l—l’j)zl-i—Z(—l)h (:n Ttz 2 )
j=1 h=1

Now let’s interpret these combinatorially. We'll use D again. Let D(z,y)
be the bivariate generating function for D.

D(w,y) =Y aMy*™
AeD

Then

o0

D(z,y) = [J(1 +27y)

j=1
So D(x,—1) is the left hand side of the proposition.

Furthermore,
o0
D(z,~1) = (dey — don)z"
n=1
where

® d., is the number of elements of D,, with an even number of parts
® d,, is the number of elements of D,, with an odd number of parts
Now let’s define some more parameters for partitions. z(A) = Ayy) = the

smallest part corresponds to the boxes in the last row of the Ferrers diagram.

Mark them on the Ferrers diagram with an x.
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O(N) = max{c : A\ + 1 — ¢ = A:}, which is the number of boxes in the
rightmost reverse diagonal of the Ferrers diagram.

Now we want to build an involution v : D — D with the following properties:
o [Y(N)| =\ VAeD
e cither y(\) = A or [k(\) —k(¥(N\)|=1 VAeD
o Y(p(\) =X YAeD

Assuming we have such a 1, let
fen = {A € Dy, : k(N) even, (X)) = A}

fo,n = ‘{)‘ €Dy k()‘) odd, w()‘> = )‘}‘
Then

o0

D(z,~1) = (dey — don)z"

n=1

= Z(fe,n - fo,n)lﬂ + Z :L)\(_l)k(k)
n=1

AED, [k(A) k(1 (N))]=1
but applying 1 to that equation we get

[e.9]

D, ~1) =3 (fen— fom)a" + S a¥O(1)hoO)

n=1 AED, [k(N)—k((\)|=1

Then by %, the last term of the second equation is the negative of the last
term of the first equation. Thus, they are each zero.

Next, build v¢: take A € D

e (a) If x(A) > o(A)+2, then remove the o boxes, including any box with
both x and o. Append them as a new row. The result is the Ferrers
diagram of a partition with distinct parts, since after removing the o
boxes, we still have at least o(\) 4+ 1 boxes in the last row, so we can
add the o’s as a new row remaining distinct.

e (b) If z(A\) = o(\) + 1 and there is no box with both x and o, then do
as in part (a) and we still get a partition with distinct parts.



e (c) If z(A) = o(\) + 1 and there is a box with both x and o, then
() = A

e (d) If o(A\) > z(\), remove the x boxes including any x,0 box and
append one to the end of the first x(\) rows. This gives a partition
with distinct parts and furthermore each x is appended immediately
following an o.

e (e) If o(A) = z(\) and there’s no box with both x and o, then do as
in (d) and get the same result.

o (f) If o(\) = z(\) and there is an x,0 box, then () = A.
Now we need to check 1 has the properties it’s supposed to have. As we

constructed it, we checked ¢ : D — D. Also, |(A)| = |A| because we only
move boxes, never add or remove them.

e In (c) and (), ¥(}) = A.
e In (a) and (b), k()) = k(1b())) — 1
o In (d) and (e), k(A) = k(s(\)) + 1
giving the second property of 1.

If ¢ is in (c) or (f), then so is ¥, so ¥ (p(N)) = A
If Aisin (a) or (b),

z(p(A) = o(A)
o(¥(A) = o(A)

if equal, there’s no x,0 box so we're in the case (d) or (e) for )(\). So
Y(1 (X)) just places the boxes back.

Similarly, if A is in (d) or (e),
2(p(A) > x(A)

(strictly greater due to distinct parts.)

if z((N)) = x(A\) + 1, then we didn’t add an extra box to this row, so no
x,0 box in (). Thus we're in (a) or (b), and so 1(¢)()\)) places the boxes
back in their original places.



So -
D(z,—1) = Z (= H (1 - a7)
AEDY(A)=A j=1

So what are the fixed points of 7 They must have an x,0 box and either
o(A) = z(A) or z(A) = o(A) + 1.

@ ]
C OR C
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So the size must be k% + k(kgl) = k(?’];*l) or k% 4+ k(kgl) = k(?’];H)

except if k = 0, then there is just £ contributing a 1. So we get the desired
formula. O

3 References

Yeats’ personal notes.



